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Abstract. The pseudopotential model of particle interaction of a semiclassical fully ionized plasma, taking
into account both quantum effects at short distances and screening field effects at large distances is de-
veloped. Radial distribution functions are investigated and it is shown that a short-range order formation
can occur in the system under discussion. Correlation energy of dense high-temperature plasma, existing
in astrophysical objects is studied and comparison with other methods is performed.

PACS. 52.25.Kn Thermodynamics of plasmas – 05.70.Ce Thermodynamic functions and equations
of state – 95.30.Tg Thermodynamic processes, conduction, convection, equations of state

1 Introduction

At the present time the importance of study of various
properties of high-pressure plasmas has considerably in-
creased. First of all it is a result of common interest in
investigations of astrophysical plasmas such as the inte-
riors of the main sequence stars (for which the Sun is a
typical representative) and also neutron stars and white
dwarfs which are the products of the final stages of stellar
evolution. The concentration of charged particles in such
formations can reach values of about 1024 ÷ 1028 cm−3

at temperature of about 105 ÷ 107 K. It is quite natural
that the properties of matter existing under such extreme
conditions differ radically from the properties of a classi-
cal plasma. Quantum-mechanical effects of diffraction and
symmetry on a level with plasma polarization effects play
significant part in determining plasma characteristics.

In accordance with the aforesaid the investigations
which allow to obtain reliable information about the prop-
erties of moderately coupled high-temperature plasma ac-
quire great importance. Recently noticeable experimen-
tal progress has been made in this field [1–6]. All these
laboratory experiments are based on the use of shock-
waves generated both by explosive devices [1] and laser
beams [2–6]. It should be mentioned here that thermo-
dynamic [1–5] and transport [6] characteristics of sam-
ples compressed up to pressures of the order of 40 Mbar
have been accurately measured in these tests. At the
same time computer simulation methods [7] and also var-
ious theoretical approaches are widely used to determine
high-pressure plasma properties. Among the most wide-
spread ones are the Bogolyubov’s method [8,9], the linear
density-response formalism [10,11], the method of Green’s
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functions [12], hypernetted-chain approximation [13], the
Feynman-Kac path integral representation [14] and oth-
ers. There also exist a tendency to use mixed approxima-
tion schemes. For instance, Chabrier and Potekhin [15]
have applied the linear-response theory with local field
corrections and the N -body hypernetted chain equations
to determine thermodynamic quantities in a wide range
of plasma parameters.

In this paper we restrict ourselves to consideration of
results concerning fully ionized homogeneous plasma in
which the influence of magnetic field can be omitted.

In the second section of this paper dimensionless val-
ues relevant to the description of characteristic parameters
of dense high-temperature plasmas are introduced. In the
third section the pseudopotential model of the particle
interaction of semiclassical plasmas, taking into account
both quantum-mechanical effects and screening field ef-
fects is developed. In section four the radial distribution
functions are explored on the basis of the proposed model.
Section five is devoted to the study of the internal energy
of dense high-temperature plasma. Summarizing conclu-
sions are formulated in the last section.

2 Plasma parameters

We consider the two-component high-temperature fully
ionized plasma consisting of ions (electric charge Ze, mass
mi and number density ni) and electrons (electric charge
−e, mass me and number density ne = Zni). Ionic subsys-
tem of such plasma can be characterized by the average
interparticle distance

a =
(

3
4πni

)1/3

, (1)
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and by the dimensionless Coulomb coupling parameter

Γ =
(Ze)2

akBT
, (2)

where T is plasma temperature and kB denotes the
Boltzmann constant.

Here Γ is the ratio between average Coulomb interac-
tion energy and thermal kinetic energy of ions. A weakly
coupled plasma corresponds to the case Γ < 1 where
the Coulomb interactions can be treated perturbation-
theoretically and strongly coupled one refers to the case
Γ > 1.

Electron subsystem can be described by the dimen-
sionless density parameter

rs =
(

3
4πne

)1/3
mee

2

~2
, (3)

and by the degeneracy parameter

θ =
kBT

EF
= 2

(
4

9π

)2/3

Z5/3 rs
Γ
, (4)

where EF is the Fermi energy of electrons and ~ denotes
the Plank constant. When θ� 1 electrons are in the state
of complete Fermi degeneracy and when θ � 1 electrons
subsystem can be treated within the classical physics ap-
proach. For the intermediate degeneracy θ ∼ 1 quantum-
mechanical effects can be taken into consideration by in-
troducing effective potentials (semiclassical approach).

The density parameter rs represents the ratio between
the mean inter-electron spacing and the Bohr radius.
Thus, if rs ≤ 1 then bound state effects must be prop-
erly included.

In this paper a dense high-temperature hydrogen
plasma (Z = 1) is considered. It can be found in the in-
teriors of the main sequence stars. Such plasma has the
pressure of approximately 105 Mbar and the temperature
of about 107 K. In these conditions the coupling, density
and degeneracy parameters have magnitudes close to 1
(for the Sun rs ∼ 0.4 and Γ ∼ 0.1). Consequently not
only polarization but also quantum-mechanical effects are
essential for such plasma.

3 Pseudopotential model

It is well-known that there exist two principle difficul-
ties arising in determination of both thermodynamic and
transport properties of dense high-temperature plasmas.
The first one is conditioned by long-range character of
bare Coulomb interaction potential of charged particles.
As a result, all theoretical approaches created for neutral
gases can not be directly applied for the description of
such plasma properties. As a rule, the above-mentioned
difficulty is avoided by taking into consideration collec-
tive effects connected with great number of interacting
particles (screening effects). On the other hand when
plasma density increases the ratio between the average

interparticle distance and the thermal de Broglie wave-
length decreases and, therefore, the problem of inclusion of
quantum-mechanical effects appears. In accordance with
the aforesaid it is of great interest to construct the pseu-
dopotential model of the particle interaction of dense high-
temperature plasmas, taking into account both quantum-
mechanical effects at short distances and the screening
field effects at large distances.

To determine thermodynamic and transport properties
of semiclassical fully ionized plasma effective potentials,
simulating quantum effects of diffraction and symmetry
are widely used. In particular, Deutsch and co-workers
[16,17] have obtained the following form of effective inter-
action potential of charged particles in plasma medium:

ϕab(r) =
eaeb

r

[
1− exp

(
− r

λab

)]
+δaeδbekBT ln 2 exp

(
− r2

λ2
eeπ ln 2

)
, (5)

where ea, eb are the electric charges of interacting parti-
cles, λab = ~/(2πµabkBT )1/2 is the thermal de Broglie
wavelength, µab = mamb/(ma +mb) is the reduced mass
of a–b pair, δab is the Kronecker delta.

The pseudopotential (5) does not take into account
collective events in plasma. That is why Baimbetov et al.
[18] proposed to use the effective potential (5) at short dis-
tances and the screened potential, treating three-particle
correlations (see [8,9]) at large ones. The transition from
one potential curve to the other was realized at the inter-
section point by the spline-approximation method.

In this regard, it is of great interest to obtain the an-
alytical expression for the pseudopotential Φab(r), taking
into account both quantum-mechanical effects of diffrac-
tion and symmetry and also screening field effects. In this
paper we apply the classical approach based on the chain
of Bogolyubov equations for the equilibrium distribution
functions where the potential (5) is taken as a micropo-
tential. Following [19] in the framework of the pair cor-
relation approximation it is not difficult to deduce the
following system of integral-differential equations for the
pseudopotential Φab(r)

4iΦab(ari, brj) = 4iϕab(ari, brj)

−
∑
c=e,i

nc
kBT

∫
dcrm4iϕac(ari,c rm)Φcb(crm,

b rj). (6)

Here 4i denotes the Laplace operator acting on the coor-
dinates of the ith particle.

In Fourier space this system of integral-differential
equations turns into a system of linear algebraic equa-
tions. Solving this system for two-component plasma
one can derive the following expressions for the Fourier
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transform Φ̃ab(k) of the pseudopotential Φab(r):

Φ̃ee(k) =
4πe2

∆

{
1

k2(1 + k2λ2
ee)

+
1

k4r2
Di

[
1

(1 + k2λ2
ee)(1 + k2λ2

ii)
− 1

(1 + k2λ2
ei)2

]
+ A

(
1 +

1
k2r2

Di(1 + k2λ2
ii)

)
exp

(
−k

2

4b

)}
, (7)

Φ̃ii(k) =
4πZ2e2

∆

{
1

k2(1 + k2λ2
ii)

+
1

k4r2
De

[
1

(1 + k2λ2
ee)(1 + k2λ2

ii)
− 1

(1 + k2λ2
ei)2

]
+

A

k2r2
Di(1 + k2λ2

ii)
exp

(
−k

2

4b

)}
, (8)

Φ̃ei(k) = −4πZe2

∆

1
k2(1 + k2λ2

ei)
, (9)

where b = (λ2
eeπ ln 2)−1, A = kBT ln 2

√
πb−3/2/(4e2), rDe,

rDi are the Debye radius of electrons and ions respectively,
and ∆ is

∆ = 1 +
1

k2r2
De(1 + k2λ2

ee)
+

1
k2r2

Di(1 + k2λ2
ii)

+
1

k2r2
Dek

2r2
Di

[
1

(1 + k2λ2
ee)(1 + k2λ2

ii)
− 1

(1 + k2λ2
ei)2

]
+
A

r2
De

(
1 +

1
k2r2

Di(1 + k2λ2
ii)

)
exp

(
−k

2

4b

)
. (10)

Analogous expressions can be reached with the linear
density-response formalism [10].

The pseudopotential Φab(r) can be restored from
(7–10) by Fourier transformation

Φab(r) =
1

(2π)3

∫
dkΦ̃ab(k) exp (ik · r) . (11)

Let us consider the limiting cases of the expressions (7–
11).

A. rDe, rDi →∞, then

Φab(r) = ϕab(r). (12)

In the absence of screening effects, the pseudopotential
Φab(r) coincides with the potential (5).

B. λii, λei, λee → 0, then

Φab(r) =
eaeb

r
exp

(
− r

rD

)
, (13)

where

1
r2
D

=
∑
c=e,i

4πnce2
c

kBT
· (14)

In the absence of quantum-mechanical effects, the
pseudopotential Φab(r) coincides with the Debye-
Hückel one.
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Fig. 1. Electron-electron pseudopotential of semiclassical hy-
drogen plasma against the dimensionless distance R = r/a at
rs = 1.0 and Γ = 0.2; 1: Debye-Hückel potential (13); 2: po-
tential (5); 3: pseudopotential (11).

C. λii, λei, λee → 0, rDe, rDi →∞, then

Φab(r) =
eaeb

r
· (15)

In the absence of both quantum-mechanical effects and
collective events, the pseudopotential Φab(r) coincides
with the Coulomb potential.

D. λii, λei, λee � rDi, rDe, then

Φab(r) =
eaeb

r

[
exp

(
− r

rD

)
− exp

(
− r

λab

)]
+δaeδbekBT ln 2 exp

(
− r2

λ2
eeπ ln 2

)
. (16)

This expression differs from the potential (5) with the
presence of exp(−r/rD) term in the brackets instead
of 1. It corresponds to the weakly coupled plasma with
Γ � 1.

In Figure 1 the electron-electron pseudopotential of
semiclassical hydrogen plasma at rs = 1 and Γ = 0.2 is
plotted. In the same figure we also show the potential (5)
and the Debye-Hückel potential (13). As one can see the
effective potential (11) coincides with Debye-Hückel po-
tential at large distances and is as finite at the origin as
the potential (5).

4 Radial distribution functions

It is well-known that the radial distribution functions are
usually used to determine thermodynamic properties of
various physical systems. They reproduce the probability
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density of discovering of one particle at the distance r
from the other. To obtain them the variety of theoretical
approaches is applied and among them the Bogolyubov
method is a widely spread one. In the third section of this
paper starting from the chain of Bogolyubov equations for
the equilibrium distribution functions the procedure to de-
rive the pseudopotential Φab(r) taking into account both
quantum-mechanical effects of diffraction and symmetry
and screening field effects has been described. In the pair
correlation approximation the radial distribution function
gab(r) of particles can be easily expressed through this
effective potential:

gab(r) = exp
(
−Φab(r)

kBT

)
. (17)

When Γ is not very large the radial distribution functions
(like the pseudopotential Φab(r)) have monotonic charac-
ter. In this case expanding the exponent in formula (17) in
weakly coupled regime and using (16), one can obtain the
expression for radial distribution function which is rather
analogous to the results of reference [1,14]

gab(r) = 1− eaeb

rkBT

[
exp

(
− r

rD

)
− exp

(
− r

λab

)]
−δaeδbe ln 2 exp

(
− r2

λ2
eeπ ln 2

)
· (18)

When Γ increases, in the curve of radial distribution func-
tions (17) local maxima and minima appear because of
the short-range order formation. Such non-monotonic be-
haviour can occur when the Coulomb coupling parameter
Γ is sufficiently large:

Γ ≥ 1
2

√
πrs
6
· (19)

As it follows from (19) if the dimensionless density param-
eter rs is small enough, the short-range order formation
can appear in the system even if Γ < 1. To demonstrate
this property we plot Figure 2 where the electron-electron
radial distribution function at rs = 0.1 and Γ = 0.3 is
shown. In Figure 2 it can be seen that the electron-electron
radial distribution function has two maxima. As a matter
of fact it has a great number of maxima but the oscillatory
amplitude vanishes quickly enough due to the screening
effects. It should be noted that the short-range order for-
mation is the result of competition between the quantum-
mechanical effects and screening field ones when the scales
of their action are comparable.

5 Correlation energy of plasma

One of the most essential thermodynamic characteristics
determining plasma properties is an internal energy. Heat
capacity, free energy and others thermodynamic potentials
can be evaluated via it.
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Fig. 2. Electron-electron radial distribution function of semi-
classical hydrogen plasma against the dimensionless distance
R = r/a at rs = 0.1 and Γ = 0.3.

From the statistic theory of equilibrium state of sys-
tems consisting of the great number of particles it is well-
known that the internal energyE can be written as follows

E =
3
2
NkBT + UN , (20)

whereN is a number of particles number in the system and
correlation energy UN is expressed via radial distribution
functions gab(r) by means of

UN = 2πV
∫ ∞

0

∑
a,b

nanbϕab(r)gab(r)r2dr, (21)

here V is a volume of the system.
In case of small Γ the integration in formula (21)

can be performed analytically with the aid of expres-
sion (18). Dropping the terms of λ2

ab/r
2
D order (they in-

clude quantum-mechanical effects of symmetry) one can
obtain

UN = −2πV
∑
a,b

nanbe
2
ae

2
b

kBT
rD + 3πV

∑
a,b

nanbe
2
ae

2
b

kBT
λab.

(22)

The first term in the expression (22) corresponds to the
Debye-Hückel theory and the second one refers to the
quantum ring sum or Montroll-Ward contribution [12]. As
one would expect the weakening of interaction between
charged particles due to the quantum effects of diffraction
leads to the increase of plasma correlation energy.

In Figures 3 and 4 the correlation energy UN of hydro-
gen plasma is presented against the Coulomb coupling pa-
rameter Γ at fixed θ = 10 and θ = 5. In these figures solid
lines indicates the calculation via formula (21) with the
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Fig. 3. Correlation energy of semiclassical hydrogen plasma
against the dimensionless coupling parameter Γ at θ = 10; 1:
Debye-Hückel theory; 2: formula (21); 3: Tanaka et al. [13]; 4:
formula (22); 5: Ichimaru et al. [21]; 6: Ebeling et al. [22].

use of the radial distribution functions (17); dashed lines
represent the weakly coupled regime (22); dotted lines are
the Debye-Hückel theory; solid triangles refers to the re-
sults of Tanaka et al. [13] where the density-response for-
malism with microfield correction was used; open squares
indicate the data of Ebeling et al. [22] where on the ba-
sis of the available quantum-statistical results the Pade
approximation of the correlation energy was performed;
solid circles represent the results of Ichimaru et al. [21]
where on the basis of the hypernetted-chain approxima-
tion the formation of bound states in plasma was taken
into account.

In both figures it is not difficult to see that the data of
Ebeling et al. [22] differs slightly from the Debye-Hückel
theory because the degeneracy parameter θ is sufficiently
large. For small Γ all theories confirm one another. The
analytical formula (22) describes correctly the numerical
calculations up to Γ ∼ 0.3 and practically coincides with
the results of [22] up to Γ ∼ 1. As one would expect
present data obtained with calculation via formula (21)
as well as the results of Ichimaru et al. [21] lie lower than
the other models. It is the result of contribution of bound
states whose inclusion lead to the decrease of plasma cor-
relation energy. It should be said that the inclusion of
bound state effects in the above mentioned cases has been
made in different ways. Ichimaru et al. [21] took into ac-
count formation of bound states by modified convolution
approximation in the hypernetted-chain theory just as in
the presented scheme bound state effects were included in
the pseudopotential model (5) (see Refs. [16,17]).

When θ decreases, the correlation energy acquires a
curve point (see Fig. 4). It is connected with the increase
of role of quantum-mechanical effects of symmetry whose
contribution is opposite to the contribution of quantum
diffraction effects.

0,0 0,2 0,4 0,6 0,8 1,0

-2,0

-1,6

-1,2

-0,8

-0,4

0,0

   

 1
 2
 3
 4
 5
 6

U
N
 / 

N
k B

T

Γ
Fig. 4. Correlation energy of semiclassical hydrogen plasma
against the dimensionless coupling parameter Γ at θ = 5; 1:
Debye-Hückel theory; 2: formula (21); 3: Tanaka et al. [13]; 4:
formula (22); 5: Ichimaru et al. [21]; 6: Ebeling et al. [22].

6 Conclusions

It is quite natural that the applied scheme has several
restrictions. The first one is connected with the use of
potential (5) at the derivation of which the formation of
hydrogen molecules has been supposed to be prevented. It
means that the plasma temperature must exceed 55 000 K.
With the aid of the dimensionless parameters introduced
in the second section this condition can be rewritten for
hydrogen plasma in the form Γ < 5.74/rs. The second
restriction Γ < 1 appears due to the use of linearization
process at the derivation of the integral-differential equa-
tion (6). In case of Γ ≥ 1 effects beyond the pair correla-
tion approximation must be accurately taken into account
and that will be the subject of further investigations.

The main results of this paper can be itemized as fol-
lows:

(a) the inclusion of both quantum-mechanical effects and
collective events in the pseudopotential of charged par-
ticles interaction leads to the screening effects at Debye
radius-range distances and also to the finite quantity
of the pseudopotential at the origin r→ 0;

(b) when plasma density increases, the short-range forma-
tion becomes possible even if the Coulomb coupling
parameter is less than 1. It is the result of the com-
petition between the quantum-mechanical effects and
screening field ones when the scales of their action are
comparable. This possibility is realized by means of
that the electrostatic forces are screened, but the quan-
tum interactions are not screened because they do not
depend on number density of particles;

(c) the proposed pseudopotential model describes ade-
quately the thermodynamic properties of dense high-
temperature plasma in certain range of plasma param-
eters.
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It should be noted here that on the basis of the pro-
posed model not only thermodynamic but also transport
properties of dense high-temperature plasma (such as elec-
tric conductivity and heat conduction) can be evaluated.
Besides, when plasma density increases, the problem of
inclusion of quantum-statistic effects (Fermi-Dirac distri-
bution) arises. All above-mentioned will be the subject of
the further investigations.
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